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The method of the joint probability distribution functions has been applied to

the case in which observed (with errors) and calculated structure factors are

available, the latter referred to a part of the structure with finite errors in the

coordinates, the thermal parameters and the scattering factors. Results obtained

by other authors are confirmed and generalized. A new relationship is found

to estimate the parameter �A, affecting the reliability of the estimates of

cos(’ � ’p). Some practical applications are described.

1. Notation

N: number of atoms in the unit cell of the model structure

conventionally referred as true structure.

p = l + t: number of atoms in the structure conventionally

referred as model structure. l atoms are located with small

deviations with respect to the matched atoms in the true

structure, t, with large deviations. Usually p� N but also p > N

is possible.

rj, j = 1, . . . , N: atomic positions in the true structure.

fj, j = 1, . . . , N: scattering factors of the atoms in true positions

( f 0
j is the scattering factor of the jth atom at rest).

r0j = rj + �rj, j = 1, . . . , p: positional vectors of the atoms

belonging to the model structure.

BTj, j = 1, . . . , N: isotropic temperature factors of the N atoms

in the unit cell of the true structure.

gj, j = 1, . . . ., p: scattering factors of the atoms of the model

structure (g0
j is the scattering factor of the jth atom at rest).

B0Tj = BTj þ�BTj, j = 1, . . . , p: isotropic temperature factor for

the atoms in the model structure.

s ¼ 2 sin �=�.

F ¼
PN

j¼1 f 0
j expð�s2BTj=4Þ expð2�ihrjÞ: ‘true’ structure factor

for the reflection h.

Fp ¼
Pp

j¼1 g0
j expð�s2B0Tj=4Þ expð2�ihr0jÞ: structure factor of

the model structure.

E ¼ Aþ iB ¼ R expði�Þ, Ep ¼ Ap þ iBp ¼ Rp expði�pÞ:

normalized structure factors of F and Fp, respectively.

": correction factor for expected intensities in reciprocal-

lattice zones (from Wilson statistics).

�N ¼ "
PN

j¼1 f 2
j .

�p ¼ "
Pl

j¼1 g2
j þ "

Pp
j¼lþ1 g2

j :

�q ¼ "
PN

j¼pþ1 f 2
j if p<N:

�A ¼

��Pl

j¼1

fjgj exp½�s2�Bj=4� cosð2�h�rjÞ

��.
ð�N�pÞ

1=2 :

ð1Þ

the average involves the l atoms and is performed per reso-

lution shell.

D ¼ hexp½�s2�BT=4� cosð2�h�rÞi : ð2Þ

the average involves the l atoms and is performed per reso-

lution shell.

2. Introduction

The passage from an inaccurate and/or incomplete to a refined

model of the scattering density is one of the most crucial

points in structural crystallography. Luzzati (1952) applied the

method of Wilson to determine the statistical distribution of

the errors in the structure factors when the atomic positions

have small but non-vanishing errors. To improve the efficiency

of the weighting in Fourier series calculation of the electron

density, Sim (1959) provided the probability distribution of the

structure-factor phases when a partial model without errors is

available. Srinivasan & Ramachandran (1965) derived the

probability of the observed structure factor in a more general

case, when the located atoms have errors in the coordinates.

They showed that the probability distribution of the phase

depends on two parameters, � and �, which are supposed to be

constant in narrow spherical layers of s2. Lunin & Urzhumtsev

(1984) suggested that � and � should be chosen with a view

to maximizing the likelihood. Lunin & Skovoroda (1995)

underlined that maximum-likelihood-based estimates of � and

� are good for models not subjected to refinement. Read

(1986) showed that in a number of cases the two parameters

may be reduced to a single one, the parameter �A. A general

treatment of the previous contributions has been presented by

Pannu & Read (1996) (see also Murshudov et al., 1997), with

particular emphasis on the refinement of macromolecular

structures, where errors on the experimental values of struc-

ture-factor magnitudes were taken into account. Read (1986)

originally calculated �A in resolution bins, each covering a

narrow resolution range: a more general technique, relying on



the fitting of smooth spline functions of resolution, has been

proposed by Cowtan (2002).

The present paper is devoted to the generalization of the

Srinivasan & Ramachandran (1965) distribution and of the

Read (1986) contribution to estimate the value of �A (from

which one can estimate the mean coordinate error for the

model structure) by including measurement errors in the

probabilistic treatment. We will use the method of the joint

probability distribution functions, already used by Hauptman

(1982) when he integrated direct methods and isomorphous

replacement techniques. In his formulation, corresponding

atoms in the two isomorphous structures may have different

scattering factors but equal coordinates and no error in

measurements. In this paper, these limitations will be over-

come by using the approach described by Giacovazzo & Siliqi

(2002), who considered errors of various natures. A new

statistical relationship has been found, which is able to esti-

mate the parameter �A. Practical applications of the new

relationship are also shown.

3. Theory

Suppose that the atoms of a model structure are defined by the

parameters rj, f 0
j , BTj, j = 1, . . . , N. We will conventionally

refer to this structure as the true structure. Suppose also that

the observed values of the corresponding structure factor are

measured with some error, i.e.

F ¼
PN
j¼1

f 0
j expð�s2BTj=4Þ expð2�ihrjÞ þ � expði#Þ; ð3Þ

where � expði#Þ is the (complex) error.

Let Fp be the structure factor of another model structure

(from now on conventionally called the model structure)

defined by the atomic parameters r0j = rj þ�rj, g0
j and B0Tj =

BTj þ�BTj, j = 1, . . . , p:

Fp ¼
Pp
j¼1

g0
j expð�s2B0Tj=4Þ expð2�ihr0jÞ:

We will conventionally refer to the �rj’s and the �BTj’s as

errors (with respect to the true structure) in the atomic posi-

tions and in the vibrational parameters. They are supposed to

be small for j � l and large for j = l + 1, . . . , p (i.e. the model

may contain atoms in completely the wrong positions).

We will calculate the joint probability distribution function

PðE;EpÞ under the following conditions.

(a) The coordinates of the vectors rj, j = 1 , . . . , N, are

primitive random variables of our approach, uniformly

distributed in the unit cell.

(b) The variables r0j, j = 1, . . . , p, are riding variables: they

are correlated with the corresponding rj’s through the local

positional errors �rj.

(c) The �rj are local variables, statistically independent of

the rj: their moduli are restrained to assume sufficiently small

values to secure, at least at low resolution, the isomorphism

between the l-atom substructure of the model structure and

the true structure.

(d) The coordinates of the vectors rj, j = l + 1, . . . , p, are

primitive random variables, uniformly distributed in the unit

cell. As a consequence, the t-atom substructure is completely

uncorrelated with the true structure.

(e) The �BTj’s are local variables that are supposed to be

close to zero for j � l and may assume any positive or negative

value for j = l + 1, . . . , p.

( f) In accordance with Read (1990), the matched atoms into

the two structures may have, in general, different scattering

factors. While Read considers complex scattering factors and

neglects errors in the measurements of the structure-factor

amplitudes, we assume real scattering factors and we do

consider the measurement errors. In this perspective, we

introduce two supplementary primitive random variables, �
and �, arising from the experimental uncertainty on the

observed structure factor.

In accordance with x1,

A ¼
PN
j¼1

f 0
j expð�s2Bj=4Þ cosð2�hrjÞ=ð�NÞ

1=2

B ¼
PN
j¼1

f 0
j expð�s2Bj=4Þ sinð2�hrjÞ=ð�NÞ

1=2

Ap ¼

�Pl

j¼1

g0
j exp½�s2ðBj þ�BjÞ=4� cos½2�hðrj þ�rjÞ�

þ
Pp

j¼lþ1

g0
j exp½�s2ðBj þ�BjÞ=4� cos½2�hðrj þ�rjÞ�

�
=ð�pÞ

1=2

Bp ¼

�Pl

j¼1

g0
j exp½�s2ðBj þ�BjÞ=4� sin½2�hðrj þ�rjÞ�

þ
Pp

j¼lþ1

g0
j exp½�s2ðBj þ�BjÞ=4� sin½2�hðrj þ�rjÞ�

�
=ð�pÞ

1=2

are the real and imaginary parts of E and Ep, respectively.

Then (see Appendix A), the joint probability distribution

PðA;Ap;B;BpÞ is the four-dimensional Gaussian distribution

PðA;Ap;B;BpÞ ¼ �
�2e�1
ðdet KÞ�1=2 exp

�
�

1

ðe � �2
AÞ

� ½ðA2
þ B2
Þ þ eðA2

p þ B2
pÞ

� 2�AðAAp þ BBpÞ�

�
;

ð4Þ

where

e ¼ ð1þ �2
RÞ; �2

R ¼ hj�j
2
i=�N:

In terms of normalized moduli and phases, equation (4)

becomes

PðR;Rp; �; �pÞ ¼ RRp�
�2e�1

ðdet KÞ�1=2 exp

�
�

1

ðe � �2
AÞ

� ½R2
þ eR2

p � 2�ARRp cosð�� �pÞ�

�
: ð5Þ

The distribution (5) is the most general result obtained in this

paper: from it the following marginal and conditional distri-

butions may be calculated:
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PðR;RpÞ ¼ 4RRpe�1
ðdet KÞ�1=2

� exp �
1

ðe � �2
AÞ
½R2
þ eR2

p�

� �
I0½X� ð6Þ

PðRjRpÞ ¼
2R

ðe � �2
AÞ

exp �
1

ðe � �2
AÞ
½R2 þ �2

AR2
p�

� �
I0½X�

ð7Þ

Pð�jR;Rp; �pÞ ¼ ½2�I0ðXÞ�
�1 expfX cosð�� �pÞg; ð8Þ

where

X ¼
2�ARRp

ðe � �2
AÞ
: ð9Þ

It may be worthwhile noticing the following points.

(i) Not all the p atoms of the model structure contribute to

D (see x1), but only l of them; just those whose position is

correlated with a corresponding atom in the true structure.

Furthermore, the t (wrongly placed atoms) contribute to the

denominator of �A: this reflects the fact that, if the wrong

atoms are omitted from the model, the model would be

improved as a result. Usually, l is an unknown parameter.

(ii) When l = p (no atom of the model is in a completely

wrong position), �rj = �BTj = 0 for j = 1, . . . , p and e = 1 (no

measurement error on the diffraction intensities), then

�A ¼ ð�p=�NÞ
1=2 and, in accordance with Sim’s results,

X ¼ 2R0R0p, where R0 and R0p are moduli normalized with

respect to the unknown part of the structure.

(iii) If l < p, fj = gj for j = 1, . . . , p, e = 1 and errors in the

model are allowed, then (Read, 1986) �A ¼ Dð�p=�NÞ
1=2.

(iv) When f 0
j ¼ g0

j , �BTj = 0 for j = 1, . . . , p and e = 1, then

(7) coincides with the Srinivasan & Ramachandran (1965)

distribution.

(v) The parameters e and �A enter individually into the

expression (5): thus they can be estimated from some suitable

moments of equation (5).

(vi) D, and therefore �A, depend on the values of the

parameters �rj and �BTj. The separate accurate evaluation of

their effects through an expression like

D ¼ hexp½�s2�BT=4�ihcosð2�h�rÞi ð10Þ

is generally impossible because �rj and �BTj are often

correlated (e.g. �BTj may assume a large positive value to

compensate for a large location error). Usually both the

averages at the right-hand side of equation (10) decrease with

s2 (consequently D and �A decrease with s2), unless the �BTj

are predominantly negative. In this case, D and �A are

constant or increase with s2 (see x6).

4. The estimation of rA

In accordance with all the quoted authors, �A is expected to be

resolution dependent. Its estimate is crucial both for evalu-

ating the reliability of the assigned phases [through the

reliability parameter X] and for the efficiency of the

maximum-likelihood refinement processes [through the

application of equation (7)]. The average implicit in its defi-

nition should therefore be performed by varying the reflection

index at a constant value of s. We can therefore rewrite �A as

�A ¼

Pl
j¼1 fjgj

ð�N�pÞ
1=2

D:

When the p atoms are perfectly located (l = p, g = f), the

practical use of equations (6)–(9) requires the estimation of

�q. Henderson & Moffat (1971) and Bricogne (1976)

suggested the equivalences

�q ¼ h2ðjFj � jFpjÞ
2="i

and

�q ¼ h2jjFj
2
� jFpj

2
j="i;

respectively. Estimates of �A (in the absence of errors in

measurements) were provided by Lunin & Urzhumtsev (1984)

by minimizing the product of the conditional distributionsQ
refl PðRpjRÞ with respect to two parameters defining �A.

Read (1986) showed that the Lunin & Urzhumtsev result is

equivalent to estimating �A by finding the zero of the residual

function

RES ¼
P
ref

2ð�A �mRRpÞ; ð11Þ

where

m ¼ hcosð�� �pÞi ¼ I1ðXÞ=I0ðXÞ

and Ii(x) is the modified Bessel function of order i.

We follow a different approach. Equation (7) allows us to

calculate any joint moment of the bivariate distribution

PðR;RpÞ, in particular

hR2R2
pi ¼

R1
0

R1
0

R2R2
pPðR;RpÞ dR dRp;

which may be obtained by application of the relationZ 1
0

x� expð��x2
ÞI0ð�xÞ dx ¼

�½ð�þ 1Þ=2�

2�ð�þ1Þ=2 1F1

�þ 1

2
; 1;

�2

4�

� �
;

ð12Þ

where � is the gamma function and 1F1 is the confluent

hypergeometric function.

We obtain the main result of this paper:

hR2R2
pi ¼ ðeþ �

2
AÞ: ð13Þ

If e is known from the counting statistics, equation (13)

directly provides an estimate of �A, as defined by the general

expression (1). In other words, there is no need to distinguish

between the contribution of the parameters �rj to D and �A

from the contribution of the parameters �BTj. Furthermore, in

our treatment �A may be evaluated without the prior infor-

mation on the l value. When this information is not available,

as usual, we assume l = p, gj = fj and rewrite equation (1) as

�A ¼
�p

�n

� �1=2

D; ð14Þ

where
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D ¼ hcosð2�h�rÞi ð15Þ

and

e� �2
A ¼ �

2
R þ

�q

�N

þ ð1�D2Þ
�p

�N

: ð16Þ

From (15),

D � 1 ð17Þ

and, from (14),

�A �
�p

�N

� �1=2

: ð18Þ

Equation (13) generalizes a previous result by Hauptman

(1982) obtained when l = p and e = 1.

Equation (16) generalizes a previous result by Srinivasan &

Ramachandran, originally obtained in the absence of errors on

measurements. However, (16) is not generally valid when l < p

(that is, when the model contains atoms completely uncorre-

lated with the true structure). Furthermore, equations (14)

and (15) do not take into account the effects of the �BTj:

consequently also equations (17) and (18) are not generally

valid.

Let us now calculate the expected value hRRpi. Owing to

(12) and to the integralZ 1
0

expð�stÞtb�1
1F1ða; c; ktÞ dt

¼ �ðbÞðs� kÞ�bF c� a; b; c;
k

k� s

� �

(valid when ½js� kj> jkj� and

½ReðbÞ> 0;ReðsÞ> maxð0;ReðkÞ�), we obtain (see Srinivasan

& Parthasarathy, 1976, for the case e = 1)

hRRpi ¼
�

4

ðe � �2
AÞ

2

e3=2
F

3

2
;

3

2
; 1;

�2
A

e

� �
;

where Fð�; �; 	; zÞ is the Gaussian hypergeometric function.

Since

Fð�; �; 	; zÞ ¼ ð1� zÞ	����Fð	 � �; 	 � �; 	; zÞ;

we have

hRRpi ¼
�

4
e1=2F

�1

2
;
�1

2
; 1;

�2
A

e

� �
: ð19Þ

The series F always converges except when �2
A = e. Its trend

when e = 1 is shown in Fig. 1 by the full line: it is almost linear

in �2
A. Accordingly, hRRpi may be approximated by the func-

tion ð�=4Þe1=2½1þ ð�=12Þð�2
A=eÞ� (dashed line in Fig. 1). Using

(19) is more complicated than using (13): we will mostly refer

to (13) in the application section.

The relation (11) has been obtained by Lunin &

Urzhumtsev (1984) via a maximum-likelihood criterion. By

using the distribution (5) an equivalent result is obtained:

hmRRpi ¼ �A: ð20Þ

We note: (a) the average at the left-hand side of (20) directly

provides �A (the error e does not appear in the formula but it

is used in the calculation of the X parameter); (b) the appli-

cation of (20) as well as the use of (11) requires the previous

knowledge of �A (to estimate m). Since this information is not

available a priori, a refinement procedure is necessary (Read,

1986); (c) equations (13) and (19) are computationally more

convenient than (20). We will employ (13) in our applications

rather than (19), since its use requires no approximation.

5. The estimate of cosð�� �pÞcosð�� �pÞ

Sim (1959) suggested that X could be rewritten in a simple

form when the partial structure is perfect: X ¼ 2R0R0p, where

R0 ¼ F=�q, R0p ¼ Fp=�q (structure factors normalized with

respect to the rest of the structure). Let us introduce (non-

general) equation (14) into equation (10): the latter may be

rewritten in the form (see Read, 2003)

X ¼
2FðDFpÞ

ðe�N �D2�pÞ
: ð21Þ

Equation (21) may be interpreted as follows.

(a) F 0p ¼ DFp is the structure factor statistically repre-

sentative of the partial structure. Accordingly, D2�p is the

expected value of hjF 0pj
2i.

(b) ðe�N �D2�pÞ is statistically representative of �q.

Accordingly, X may be again expressed in the Sim form

X ¼ 2R0R0p.

Let us now introduce the general relation (13) into equation

(10). An estimate of X in terms of statistical averages is

obtained:

X ¼
2ðhR2R2

pi � eÞ1=2

ð2e � hR2R2
piÞ

RRp: ð22Þ

Equation (22) suggests that the expected value of hR2R2
pi

should lie in the interval (e, 2e) � (1 + �2
R, 2+ 2�2

R). Indeed,

when two isomorphous structures perfectly coincide (i.e. when

nl = 0, p = N, �rj = �Bj = 0, for j = 1, . . . , n) and there is no

measurement error in the data (i.e. e = 1) then Rp = R and

hR2R2
pi ¼ hR

4
i ¼ 2;

according to Wilson statistics. The larger the deviation from 2,

the more imperfect is the model. In the limit case in which the
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Figure 1
The function ð�e1=2=4ÞFð�1

2 ;
�1
2 ; 1; �2

A=eÞ (full line) and its approximation
y ¼ ð�e1=2=4Þ½1þ ð�=12Þð�2

A=eÞ� (dashed line) in the interval (0, 1), for
e = 1.



two structures are completely uncorrelated and there is no

measurement error in the data then

hR2R2
pi ¼ hR

2
ihR2

pi ¼ 1:

The curves hR2i, hR2
pi and hR2R2

pi show strong Debye effects,

which are responsible for the deviations of hR2i and hR2
pi from

unity, and of hR2R2
pi from the interval (e, 2e). In accordance

with Read (1986), it is better to reduce these effects by

renormalizing R2 and R2
p within each resolution shell.

Equation (22) is equivalent to (21): we will refer to equation

(22) in our applications, where we apply the following

restriction: the experimental value of hR2R2
pi is not allowed to

lie outside the interval (e + 0.2, 2e � 0.2).

6. Practical applications

The theoretical results obtained in xx4 and 5 were imple-

mented into a modified version of the program SIR2004

(Burla et al., 2005) and applied to several practical cases.

Owing to their different behaviours, we will report the results

obtained for the experimental data of two of them.
* The protein crambin (Weeks et al., 1995), space group P21,

362 atoms in the asymmetric unit. The original data include

28725 reflections at 0.83 Å resolution.
* The protein RNase59 (Berisio et al., 2002), space group

P21, 950 atoms in the symmetric unit. The original data include

53354 reflections at 1.05 Å resolution.

To elucidate the effect of measurement errors, we first

applied equation (13) to calculated data of crambin. The

362 atoms in the asymmetric unit were used to compute the F

values (BTj = 6 for all the j’s): a subset of atoms, corresponding

to the fraction �p=�N = 0.48 was used to calculate the Fp’s

(again we assigned BTj ¼ 6 to all the atoms of the subset).

Wilson plot normalization returned an average BT factor

equal to 5.99 in both the cases. In Fig. 2, we plot �A [as

obtained from equation (13)] versus resolution: obviously the

parameter e was 1 for all the reflections because we are dealing

with calculated error-free data. In the same figure, the real

hcosð�� �pÞi values are compared with their expected m

values. We note: (a) all three least-squares straight lines, fitting

�A, hcosð�� �pÞi and m, respectively, are practically hori-

zontal, as expected for a perfect partial structure. In particular,

the average value of �A is 0.69, in quite good agreement with

equation (18); (b) m and hcosð�� �pÞi plots practically

overlap. In Fig. 3, we plot (independently of the resolution)

hcosð�� �pÞi versus m: the plot is very close to the diagonal of

the figure (the ideal case).

The tests with the experimental data were performed as

follows. SIR2004 is able to solve ab initio both the structures:

the structural refinement (automatically performed by the

program via modified electron-density techniques) was inter-

rupted at the stages at which the average phase error was 58�

for crambin and 73� for RNase59. For the first, we selected a

partial structure of 164 atoms (S included), characterized by

the ratio �p=�N � 0:48, for the second a partial structure of

304 atoms (S included) corresponding to the value

�p=�N � 0:23

In Fig. 4, �A, as calculated by equation (13) for the

experimental diffraction data of crambin, is plotted as a

function of the resolution. In the same figure, the real

hcosð�� �pÞi values are compared with the expected m

values. We note the following. (a) The least-squares straight

lines (not shown to allow a simple reading of the figure) fitting

the �A and m values decrease with sin �=�. This feature well

agrees with the trend of hcosð�� �pÞi. (b) The m values fit

well the experimental hcosð�� �pÞi values when calculated

according to equation (10). This behaviour is confirmed by

Fig. 3, where the hcosð�� �pÞi’s are compared (independently

of the resolution) with the expected m’s.
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Figure 2
Crambin: calculated data. Open circles: �A plot according to equation
(13) versus resolution. The least-squares straight line is calculated by
omitting the point with the lowest value of sin �=�. Triangles: m plot
according to m = I1(X)/I0(X), where X is given by equation (9). Least-
squares straight line calculated as before. Asterisks: experimental
hcosð�� �pÞi plot. Least-squares straight line calculated as before.

Figure 3
Crambin: m estimates [where m = I1(X)/I0(X) and X is given by equation
(9)] against hcosð�� �pÞi values. Circles: calculated data; asterisks:
experimental data.



In order to compare our results with those obtainable by

application of previous theories, we plot in Fig. 4 the �A and m

values obtained by the program (maximum-likelihood-based)

SIGMAA (Collaborative Computational Project, Number 4,

1994)). We observe that the m’s provided by SIGMAA over-

estimate the hcosð�� �pÞi’s.

The above results suggest the following conclusion. The

overestimation of �A and, correspondingly, of hcosð�� �pÞi

may depend (besides other sources) on: (a) the experimental

errors in the data; (b) on how much h|�|2i is representative of

the experimental error. In particular, it may be recalled that

measurement errors are usually evaluated from diffraction

intensities via Poisson statistics (integrated by standard

deviations criteria when more than the asymmetric unit in the

reciprocal space has been measured) and that systematic

errors are not taken into account by such statistics (e.g. the

solvent effects at low s values). Therefore, errors in the h|�|2i

moduli and in the h|�|2i trend (with sin �/�) will cause,

according to equation (13), errors in the �A estimates. To

check this last observation, we plot in Fig. 5 the �A values, as

calculated by equation (13) for RNase59, against the resolu-

tion, together with the corresponding m values. In the same

figure, we also plot �A and m as calculated by SIGMAA. The m

plots are compared with the experimental hcosð�� �pÞi

values. We observe the following.

(a) hcosð�� �pÞi increases with sin �/�. This trend is shared

by both m plots and is rather unexpected if one relies on

equation (15) (this equation suggests that �A should always

decrease with sin �=�). Actually, in all the literature quoted

above, the model structures are divided into two categories:

partial structures without coordinate errors and partial

structures with coordinate errors. For the first category, �A is

expected to be constant versus the resolution, while �A is

expected to decrease for increasing values of sin �=�. It is

worthwhile noting that the general expression for D is given

by equation (1): the value of D depends also on the errors in

the vibrational parameters, and these can be responsible for

the inverse �A behaviour. Such a behaviour is not infrequent

when the phasing process is at an intermediate state (e.g. when

electron-density modification techniques are used to improve

the phase estimates).

(b) Both (our and SIGMAA) m estimates overestimate the

experimental hcosð�� �pÞi values. To explain this result, we

plot in Fig. 6 the value of e as a function of resolution for

crambin and RNase59. It easy seen that crambin e values are

remarkably larger than the corresponding values for RNase.

If, in all the calculations for RNase, we multiply by a factor of

2, the experimental e values, the m plot calculated according to

our approach will be remarkably closer to the experimental

hcosð�� �pÞi values. In conclusion, if h|�|2i is too rough a

representative of the experimental error, then the accuracy of

the �A estimates will decrease. This is another reason for

involving measurement errors in any mathematical model

describing the isomorphism between a partial and the

complete structure [see Murshudov et al. (1997) and Bricogne

& Irwin (1996) for maximum-likelihood applications in the

refinement context].

7. Conclusions

The probabilistic theory on the structure-factor distribution

for two isomorphous structures, one of which is part of the

second and shows errors in the atomic coordinates, has been

generalized to include errors in the vibrational parameters and
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Figure 4
Crambin: experimental diffraction data. Open circles: �A plot according
to equation (13) versus resolution. Asterisks: experimental hcosð�� �pÞi

plot. Open triangles: m plot according to m = I1(X)/I0(X), where X is
given by equation (9). Filled circles: �A plot, calculated by maximum-
likelihood criteria, by the program SIGMAA. Filled triangles: m plot
calculated by the program SIGMAA.

Figure 5
RNase59: experimental diffraction data. Open circles: �A plot according
to equation (13) versus resolution. Asterisks: experimental hcosð�� �pÞi

plot. Open triangles: m plot according to m = I1(X)/I0(X), where X is
given by equation (9). Filled circles: �A plot, calculated by maximum-
likelihood criteria, by the program SIGMAA. Filled triangles: m plot
calculated by the program SIGMAA.



in measurements. A simple probabilistic expression has been

found, which, applied to practical cases, allows one to improve

the phase estimates provided by the classical Sim relationship.

APPENDIX A

To calculate the distribution PðA;Ap;B;BpÞ, we first calculate

the characteristic function

Cðu; up; v; vpÞ ¼ hexp iðuAþ upAp þ vBþ vpBpÞi

¼ expf� 1
4 ½eðu

2 þ v2Þ þ u2
p þ v2

p

þ 2�Aðuup þ vvpÞ�g;

where u, up, v, vp are carrying variables associated with A, Ap,

B, Bp, respectively. Then PðA;Ap;B;BpÞ is the Fourier

transform of C. We have

PðA;Ap;B;BpÞ ¼
Rþ1
�1

. . .
Rþ1
�1

expðiTUÞ expð� 1
2UKUÞ dU

¼ ð2�Þn=2ðdet KÞ�1=2 expð� 1
2 TK�1TÞ;

where

U ¼ ½ð2=eÞ
1=2

u0; ð2Þ1=2u0p; ð2=eÞ
1=2

v0; ð2Þ1=2
v0p�

T ¼ ½ð2=eÞ1=2A; ð2Þ1=2Ap; ð2=eÞ1=2B; ð2Þ1=2Bp�:

Since

K ¼
L 0

0 L

����
����; K�1

¼
L�1 0

0 L�1

����
����; det K ¼ ðe� �2

AÞ
2=e2;

where

L ¼
1 �A=e1=2

�A=e1=2 1

����
����;

we obtain

PðA;Ap;B;BpÞ ¼ �
�2e�1
ðdet KÞ�1=2 exp

�
�

1

ðe � �2
AÞ

� ½ðA2 þ B2Þ þ eðA2
p þ B2

pÞ

� 2�AðAAp þ BBpÞ�

�
;

which coincides with equation (4).

We thank R. J. Read for enlightening discussions.
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Figure 6
The e values for crambin (asterisks) and for RNase59 (circles) are plotted
against resolution.


